Monday, 25 November 2013

Module V - Water Pollution - part II

Municipal Water Supply

Water supply is the provision by public utilities, commercial organisations, community endeavours or by individuals of water , usually by a system of pumps and pipes are covered under Municipal Water Supply. Irrigation is covered separately.
In 2010 about 84% of the global population ( 6,740 million people) had access to piped water supply through house connections or to an improved water source through other means than house, including standpipes, "water kiosks", protected springs and protected wells. However, more than 13% ( 884 million people) did not have access to an improved water source and had to use unprotected wells or springs, canals, lakes or rivers for their water needs.
Technical overview
Water supply systems get water from a variety of locations, including groundwater (aquifers), surface water (lakes and rivers), conservation and the sea through desalination. The water is then, in most cases, purified, disinfected through chlorination and sometimes fluoridated. Treated water then either flows by gravity or is pumped to reservoirs, which can be elevated such as water towers or on the ground.  Once water is used, wastewater is typically discharged in a sewer system and treated in a wastewater treatment plant before being discharged into a river, lake or the sea or reused for landscaping, irrigation or industrial use.
Service quality
Many of the 3.5 billion people having access to piped water receive a poor or very poor quality of service, especially in developing countries where about 80% of the world population lives. Water supply service quality has many dimensions: continuity; water quality; pressure; and the degree of responsiveness of service providers to customer complaints.
Continuity of supply
Continuity of water supply is taken for granted in most developed countries, but is a severe problem in many developing countries, where sometimes water is only provided for a few hours every day or a few days a week. It is estimated that about half of the population of developing countries receives water on an intermittent basis.
Water quality
Drinking water quality has a micro-biological and a physico-chemical dimension. There are thousands of parameters of water quality. In public water supply systems water should, at a minimum, be disinfected - most commonly through the use of chlorination or the use of ultra violet light - or it may need to undergo treatment, especially in the case of surface water. For more details please see the separate entries on water quality, water treatment and drinking water.
Water pressure
Water pressures vary in different locations of a distribution system. Water mains below the street may operate at higher pressures, with a pressure reducer located at each point where the water enters a building or a house. In poorly managed systems, water pressure can be so low as to result only in a trickle of water or so high that it leads to damage to plumbing fixtures and waste of water. Pressure in an urban water system is typically maintained either by a pressurized water tank serving an urban area, by pumping the water up into a tower and relying on gravity to maintain a constant pressure in the system or solely by pumps at the water treatment plant and repeater pumping stations.


Institutional responsibility and governance
A great variety of institutions have responsibilities in water supply. A basic distinction is between institutions responsible for policy and regulation on the one hand; and institutions in charge of providing services on the other hand.
Policy and regulation
Water supply policies and regulation are usually defined by one or several Ministries, in consultation with the legislative branch. The distinction between policy functions and regulatory functions is not always clear-cut. In some countries they are both entrusted to Ministries, but in others regulatory functions are entrusted to agencies that are separate from Ministries.

Many water utilities provide services in a single city, town or municipality. However, in many countries municipalities have associated in regional or inter-municipal or multi-jurisdictional utilities to benefit from economies of scale.
Ownership and governance arrangements
Water supply providers can be either public, private, mixed or cooperative. Most urban water supply services around the world are provided by public entities. But in most middle and low-income countries, these publicly-owned and managed water providers are usually very inefficient as a result of political interference, leading to over-staffing and low labour productivity. Ironically, the main losers from this institutional arrangement are the urban poor in these countries. Because they are not connected to the network, they end up paying far more per litre of water than do more well-off households connected to the network who benefit from the implicit subsidies that they receive from loss-making utilities.
Metering of water supply is usually motivated by one or several of four objectives: First, it provides an incentive to conserve water which protects water resources (environmental objective). Second, it can postpone costly system expansion and saves energy and chemical costs (economic objective). Third, it allows a utility to better locate distribution losses (technical objective). Fourth, it allows to charge for water based on use, which is perceived by many as the fairest way to allocate the costs of water supply to users. Metering is considered good practice in water supply and is widespread in developed countries, except for the United Kingdom. In developing countries it is estimated that half of all urban water supply systems are metered and the tendency is increasing.

Biochemical/Biological oxygen demand or BOD

Biochemical/Biological oxygen demand or BOD is a chemical procedure for determining the amount of dissolved oxygen needed by aerobic biological organisms in a body of water to break down organic material present in a given water sample at certain temperature over a specific time period. It is not a precise quantitative test, although it is widely used as an indication of the organic quality of water.  It is most commonly expressed in milligrams of oxygen consumed per litre of sample during 5 days of incubation [The act of warming eggs in order to hatch them, as by a bird sitting upon a clutch of eggs in a nest or the act of keeping an organism, a cell, or cell culture in conditions favorable for growth and development or the maintenance of an infant, especially one that is ill or born before the usual gestation period, in an environment of controlled temperature, humidity, and oxygen concentration in order to provide optimal conditions for growth and development, the development of an infection from the time the pathogen enters the body until signs or symptoms first appear.]  at 200 C and is often used as a robust surrogate of the degree of organic pollution of water.
BOD can be used as a gauge of the effectiveness of wastewater treatment plants.

Chemical Oxygen Demand (COD)

In environmental chemistry, the chemical oxygen demand (COD) test is commonly used to indirectly measure the amount of organic compounds in water. Most applications of COD determine the amount of organic pollutants found in surface water (e.g. lakes and rivers), making COD a useful measure of water quality. It is expressed in milligrams per liter (mg/L), which indicates the mass of oxygen consumed per liter of solution. Older references may express the units as parts per million (ppm).
The basis for the COD test is that nearly all organic compounds can be fully oxidized to carbon dioxide with a strong oxidizing agent under acidic conditions. The amount of oxygen required oxidizing an organic compound to carbon dioxide, ammonia, and water is given by:

This expression does not include the oxygen demand caused by the oxidation of ammonia into nitrate. The process of ammonia being converted into nitrate is referred to as nitrification. The following is the correct equation for the oxidation of ammonia into nitrate.

The second equation should be applied after the first one to include oxidation due to nitrification if the oxygen demand from nitrification must be known. Dichromate does not oxidize ammonia into nitrate, so this nitrification can be safely ignored in the standard chemical oxygen demand test.

Significance of BOD and COD test

Wastewater quality indicators such as the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD) are essentially laboratory tests to determine whether or not a specific wastewater will have a significant adverse effect upon fish or upon aquatic plant life.
Wastewater biochemical oxygen demand and chemical oxygen demand
Any oxidizable material present in a natural waterway or in an industrial wastewater will be oxidized both by biochemical (bacterial) or chemical processes. The result is that the oxygen content of the water will be decreased. Basically, the reaction for biochemical oxidation may be written as:
Oxidizable material + bacteria + nutrient + O2 → CO2 + H2O + oxidized inorganics such as NO3 or SO4
Oxygen consumption by reducing chemicals such as sulfides and nitrites is typified as follows: S-- + 2 O2 → SO4-- , NO2- + ½ O2 → NO3- .
Since all natural waterways contain bacteria and nutrient, almost any waste compounds introduced into such waterways will initiate biochemical reactions (such as shown above). Those biochemical reactions create what is measured in the laboratory as the Biochemical Oxygen Demand (BOD).
Oxidizable chemicals (such as reducing chemicals) introduced into a natural water will similarly initiate chemical reactions (such as shown above). Those chemical reactions create what is measured in the laboratory as the Chemical Oxygen Demand (COD).
Both the BOD and COD tests are a measure of the relative oxygen-depletion effect of a waste contaminant. Both have been widely adopted as a measure of pollution effect. The BOD test measures the oxygen demand of biodegradable pollutants whereas the COD test measures the oxygen demand of biogradable pollutants plus the oxygen demand of non-biodegradable oxidizable pollutants.
The so-called 5-day BOD measures the amount of oxygen consumed by biochemical oxidation of waste contaminants in a 5-day period. The total amount of oxygen consumed when the biochemical reaction is allowed to proceed to completion is called the Ultimate BOD. The Ultimate BOD is too time consuming, so the 5-day BOD has almost universally been adopted as a measure of relative pollution effect.
There are also many different COD tests. Perhaps, the most common is the 4-hour COD.
There is no generalized correlation between the 5-day BOD and the Ultimate BOD. Likewise, there is no generalized correlation between BOD and COD. It is possible to develop such correlations for a specific waste contaminant in a specific wastewater stream, but such correlations cannot be generalized for use with any other waste contaminants or wastewater streams.

Waste Water, Primary and Secondary Waste Water Treatment

Wastewater is any water that has been adversely affected in quality by anthropogenic influence. It comprises liquid waste discharged by domestic residences, commercial properties, industry, and/or agriculture and can encompass a wide range of potential contaminants and concentrations. In the most common usage, it refers to the municipal wastewater that contains a broad spectrum of contaminants resulting from the mixing of wastewaters from different sources.
Sewage is correctly the subset of wastewater that is contaminated with feces or urine, but is often used to mean any waste water. "Sewage" includes domestic, municipal, or industrial liquid waste products disposed of, usually via a pipe or sewer or similar structure, sometimes in a cesspool emptier.
The physical infrastructure, including pipes, pumps, screens, channels etc. used to convey sewage from its origin to the point of eventual treatment or disposal is termed sewerage.

Sewage treatment, or domestic wastewater treatment, is the process of removing contaminants from wastewater and household sewage, both runoff (effluents) and domestic. It includes physical, chemical, and biological processes to remove physical, chemical and biological contaminants. Its objective is to produce an environmentally-safe fluid waste stream (or treated effluent) and a solid waste (or treated sludge) suitable for disposal or reuse (usually as farm fertilizer).

Sewage is created by residential, institutional, and commercial and industrial establishments and includes household waste liquid from toilets, baths, showers, kitchens, sinks and so forth that is disposed of via sewers. In many areas, sewage also includes liquid waste from industry and commerce.
The separation and draining of household waste into greywater and blackwater is becoming more common in the developed world, with greywater being permitted to be used for watering plants or recycled for flushing toilets. Most sewage also includes some surface water from roofs or hard-standing areas and may include storm water runoff.
Sewerage systems capable of handling storm water are known as combined systems or combined sewers. Such systems are usually avoided now since they complicate and thereby reduce the efficiency of sewage treatment plants owing to their seasonality. The wide variability in flow, affected by precipitation, also leads to a need to construct much larger, more expensive, treatment facilities than would otherwise be required. In addition, heavy storms that contribute greater excess flow than the treatment plant can handle may overwhelm the sewage treatment system, causing a spill or overflow. Modern sewered developments tend to be provided with separate storm drain systems for rainwater.
As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease.
Process overview
Sewage can be treated close to where it is created, a decentralised system, (in septic tanks, biofilters or aerobic treatment systems), or be collected and transported via a network of pipes and pump stations to a municipal treatment plant, a centralised system.  Sewage collection and treatment is typically subject to local, state and federal regulations and standards. Industrial sources of wastewater often require specialized treatment processes.
Sewage treatment generally involves three stages, called primary, secondary and tertiary treatment.
•    Primary treatment consists of temporarily holding the sewage in a quiescent basin where heavy solids can settle to the bottom while oil, grease and lighter solids float to the surface. The settled and floating materials are removed and the remaining liquid may be discharged or subjected to secondary treatment.
•    Secondary treatment removes dissolved and suspended biological matter. Secondary treatment is typically performed by indigenous, water-borne micro-organisms in a managed habitat. Secondary treatment may require a separation process to remove the micro-organisms from the treated water prior to discharge or tertiary treatment.
•    Tertiary treatment is sometimes defined as anything more than primary and secondary treatment in order to allow rejection into a highly sensitive or fragile ecosystem (estuaries, low-flow rivers, coral reefs,...). Treated water is sometimes disinfected chemically or physically (for example, by lagoons and microfiltration) prior to discharge into a stream, river, bay, lagoon or wetland, or it can be used for the irrigation of a golf course, green way or park. If it is sufficiently clean, it can also be used for groundwater recharge or agricultural purposes.
Pre-treatment
Pre-treatment removes materials that can be easily collected from the raw wastewater before they damage or clog the pumps and skimmers of primary treatment clarifiers (trash, tree limbs, leaves, etc.).
Screening
The influent sewage water is screened to remove all large objects carried in the sewage stream. This is most commonly done with an automated mechanically raked bar screen in modern plants serving large populations, whilst in smaller or less modern plants a manually cleaned screen may be used. The raking action of a mechanical bar screen is typically paced according to the accumulation on the bar screens and/or flow rate. The solids are collected and later disposed in a landfill or incinerated. Bar screens or mesh screens of varying sizes may be used to optimise solids removal. If gross solids are not removed they become entrained in pipes and moving parts of the treatment plant and can cause substantial damage and inefficiency in the process.
Grit removal
Pre-treatment may include a sand or grit channel or chamber where the velocity of the incoming wastewater is adjusted to allow the settlement of sand, grit, stones, and broken glass. These particles are removed because they may damage pumps and other equipment. For small sanitary sewer systems, the grit chambers may not be necessary, but grit removal is desirable at larger plants.
Fat and grease removal
In some larger plants, fat and grease is removed by passing the sewage through a small tank where skimmers collect the fat floating on the surface. Air blowers in the base of the tank may also be used to help recover the fat as froth. In most plants however, fat and grease removal takes place in the primary settlement tank using mechanical surface skimmers.
Primary treatment
In the primary sedimentation stage, sewage flows through large tanks, commonly called "primary clarifiers" or "primary sedimentation tanks." The tanks are used to settle sludge while grease and oils rise to the surface and are skimmed off. Primary settling tanks are usually equipped with mechanically driven scrapers that continually drive the collected sludge towards a hopper in the base of the tank where it is pumped to sludge treatment facilities. Grease and oil from the floating material can sometimes be recovered for saponification.
The dimensions of the tank should be designed to effect removal of a high percentage of the floatables and sludge. A typical sedimentation tank may remove from 60 to 65 percent of suspended solids, and from 30 to 35 percent of biochemical oxygen demand (BOD) from the sewage.
Secondary treatment
Secondary treatment is designed to substantially degrade the biological content of the sewage which are derived from human waste, food waste, soaps and detergent. The majority of municipal plants treat the settled sewage liquor using aerobic biological processes. To be effective, the biota requires both oxygen and food to live. The bacteria and protozoa consume biodegradable soluble organic contaminants (e.g. sugars, fats, organic short-chain carbon molecules, etc.) and bind much of the less soluble fractions into floc. Secondary treatment systems are classified as fixed-film or suspended-growth systems.
•    Fixed-film or attached growth systems include trickling filters and rotating biological contactors, where the biomass grows on media and the sewage passes over its surface.
•    Suspended-growth systems include activated sludge, where the biomass is mixed with the sewage and can be operated in a smaller space than fixed-film systems that treat the same amount of water. However, fixed-film systems are more able to cope with drastic changes in the amount of biological material and can provide higher removal rates for organic material and suspended solids than suspended growth systems.
Roughing filters are intended to treat particularly strong or variable organic loads, typically industrial, to allow them to then be treated by conventional secondary treatment processes. Characteristics include filters filled with media to which wastewater is applied. They are designed to allow high hydraulic loading and a high level of aeration. On larger installations, air is forced through the media using blowers. The resultant wastewater is usually within the normal range for conventional treatment processes.
A filter removes a small percentage of the suspended organic matter, while the majority of the organic matter undergoes a change of character, only due to the biological oxidation and nitrification taking place in the filter. With this aerobic oxidation and nitrification, the organic solids are converted into coagulated suspended mass, which is heavier and bulkier, and can settle to the bottom of a tank. The effluent of the filter is therefore passed through a sedimentation tank, called a secondary clarifier, secondary settling tank or humus tank.
Activated sludge
In general, activated sludge plants encompass a variety of mechanisms and processes that use dissolved oxygen to promote the growth of biological floc that substantially removes organic material.
The process traps particulate material and can, under ideal conditions, convert ammonia to nitrite and nitrate and ultimately to nitrogen gas.
Surface-aerated basins (Lagoons)
Many small municipal sewage systems in the United States (1 million gal./day or less) use aerated lagoons.
Most biological oxidation processes for treating industrial wastewaters have in common the use of oxygen (or air) and microbial action. Surface-aerated basins achieve 80 to 90 percent removal of BOD with retention times of 1 to 10 days. The basins may range in depth from 1.5 to 5.0 metres and use motor-driven aerators floating on the surface of the wastewater.
In an aerated basin system, the aerators provide two functions: they transfer air into the basins required by the biological oxidation reactions, and they provide the mixing required for dispersing the air and for contacting the reactants (that is, oxygen, wastewater and microbes). Typically, the floating surface aerators are rated to deliver the amount of air equivalent to 1.8 to 2.7 kg O2/kW•h. However, they do not provide as good mixing as is normally achieved in activated sludge systems and therefore aerated basins do not achieve the same performance level as activated sludge units.
Biological oxidation processes are sensitive to temperature and, between 0 °C and 40 °C, the rate of biological reactions increase with temperature. Most surface aerated vessels operate at between 4 °C and 32 °C.
Constructed wetlands
Constructed wetlands (can either be surface flow or subsurface flow, horizontal or vertical flow), include engineered reedbeds and belong to the family of phytorestoration and ecotechnologies; they provide a high degree of biological improvement and depending on design, act as a primary, secondary and sometimes tertiary treatment. They are known to be highly productive systems as they copy natural wetlands, called the "Kidneys of the earth" for their fundamental recycling capacity of the hydrological cycle in the biosphere. Robust and reliable, their treatment capacities improve as time go by, at the opposite of conventional treatment plants whose machinery age with time. They are being increasingly used, although adequate and experienced designs are more fundamental than for other systems and space limitation may impede their use.
Filter beds (oxidizing beds)
In older plants and those receiving variable loadings, trickling filter beds are used where the settled sewage liquor is spread onto the surface of a bed made up of coke (carbonized coal), limestone chips or specially fabricated plastic media. Such media must have large surface areas to support the biofilms that form. The liquor is typically distributed through perforated spray arms. The distributed liquor trickles through the bed and is collected in drains at the base. These drains also provide a source of air which percolates up through the bed, keeping it aerobic. Biological films of bacteria, protozoa and fungi form on the media’s surfaces and eat or otherwise reduce the organic content. This biofilm is often grazed by insect larvae, snails, and worms which help maintain an optimal thickness. Overloading of beds increases the thickness of the film leading to clogging of the filter media and ponding on the surface. Recent advances in media and process micro-biology design overcome many issues with Trickling filter designs.
Soil Bio-Technology
A new process called Soil Bio-Technology (SBT) developed at IIT Bombay has shown tremendous improvements in process efficiency enabling total water reuse, due to extremely low operating power requirements of less than 50 joules per kg of treated water. Typically SBT systems can achieve chemical oxygen demand (COD) levels less than 10 mg/L from sewage input of COD 400 mg/L. SBT plants exhibit high reductions in COD values and bacterial counts as a result of the very high microbial densities available in the media. Unlike conventional treatment plants, SBT plants produce insignificant amounts of sludge, precluding the need for sludge disposal areas that are required by other technologies.
Biological aerated filters
Biological Aerated (or Anoxic) Filter (BAF) or Biofilters combine filtration with biological carbon reduction, nitrification or denitrification. BAF usually includes a reactor filled with a filter media. The media is either in suspension or supported by a gravel layer at the foot of the filter. The dual purpose of this media is to support highly active biomass that is attached to it and to filter suspended solids. Carbon reduction and ammonia conversion occurs in aerobic mode and sometime achieved in a single reactor while nitrate conversion occurs in anoxic mode. BAF is operated either in upflow or downflow configuration depending on design specified by manufacturer.
Rotating biological contactors
Rotating biological contactors (RBCs) are mechanical secondary treatment systems, which are robust and capable of withstanding surges in organic load. RBCs were first installed in Germany in 1960 and have since been developed and refined into a reliable operating unit. The rotating disks support the growth of bacteria and micro-organisms present in the sewage, which break down and stabilise organic pollutants. To be successful, micro-organisms need both oxygen to live and food to grow. Oxygen is obtained from the atmosphere as the disks rotate. As the micro-organisms grow, they build up on the media until they are sloughed off due to shear forces provided by the rotating discs in the sewage. Effluent from the RBC is then passed through final clarifiers where the micro-organisms in suspension settle as sludge. The sludge is withdrawn from the clarifier for further treatment.
Membrane bioreactors
Membrane bioreactors (MBR) combine activated sludge treatment with a membrane liquid-solid separation process. The membrane component uses low pressure microfiltration or ultra filtration membranes and eliminates the need for clarification and tertiary filtration. The membranes are typically immersed in the aeration tank; however, some applications utilize a separate membrane tank. One of the key benefits of an MBR system is that it effectively overcomes the limitations associated with poor settling of sludge in conventional activated sludge (CAS) processes. The technology permits bioreactor operation with considerably higher mixed liquor suspended solids (MLSS) concentration than CAS systems, which are limited by sludge settling. The process is typically operated at MLSS in the range of 8,000–12,000 mg/L, while CAS are operated in the range of 2,000–3,000 mg/L. The elevated biomass concentration in the MBR process allows for very effective removal of both soluble and particulate biodegradable materials at higher loading rates. Thus increased sludge retention times, usually exceeding 15 days, ensure complete nitrification even in extremely cold weather.
The cost of building and operating an MBR is usually higher than conventional wastewater treatment. Membrane filters can be blinded with grease or abraded by suspended grit and lack a clarifier's flexibility to pass peak flows. The technology has become increasingly popular for reliably pretreated waste streams and has gained wider acceptance where infiltration and inflow have been controlled, however, and the life-cycle costs have been steadily decreasing. The small footprint of MBR systems, and the high quality effluent produced, make them particularly useful for water reuse applications.
Secondary sedimentation
The final step in the secondary treatment stage is to settle out the biological floc or filter material through a secondary clarifier and to produce sewage water containing low levels of organic material and suspended matter.
Tertiary treatment
The purpose of tertiary treatment is to provide a final treatment stage to raise the effluent quality before it is discharged to the receiving environment (sea, river, lake, ground, etc.). More than one tertiary treatment process may be used at any treatment plant. If disinfection is practiced, it is always the final process. It is also called "effluent polishing."
Filtration
Sand filtration removes much of the residual suspended matter. Filtration over activated carbon, also called carbon adsorption, removes residual toxins.
Lagooning
Lagooning provides settlement and further biological improvement through storage in large man-made ponds or lagoons. These lagoons are highly aerobic and colonization by native macrophytes, especially reeds, is often encouraged. Small filter feeding invertebrates such as Daphnia and species of Rotifera greatly assist in treatment by removing fine particulates.
Nutrient removal
Wastewater may contain high levels of the nutrients nitrogen and phosphorus. Excessive release to the environment can lead to a build up of nutrients, called eutrophication, which can in turn encourage the overgrowth of weeds, algae, and cyanobacteria (blue-green algae). This may cause an algal bloom, a rapid growth in the population of algae. The algae numbers are unsustainable and eventually most of them die. The decomposition of the algae by bacteria uses up so much of oxygen in the water that most or all of the animals die, which creates more organic matter for the bacteria to decompose. In addition to causing deoxygenation, some algal species produce toxins that contaminate drinking water supplies. Different treatment processes are required to remove nitrogen and phosphorus.
Nitrogen removal
The removal of nitrogen is effected through the biological oxidation of nitrogen from ammonia to nitrate (nitrification), followed by denitrification, the reduction of nitrate to nitrogen gas. Nitrogen gas is released to the atmosphere and thus removed from the water.
Nitrification itself is a two-step aerobic process, each step facilitated by a different type of bacteria. The oxidation of ammonia (NH3) to nitrite (NO2−) is most often facilitated by Nitrosomonas spp. (nitroso referring to the formation of a nitroso functional group). Nitrite oxidation to nitrate (NO3−), though traditionally believed to be facilitated by Nitrobacter spp. (nitro referring the formation of a nitro functional group), is now known to be facilitated in the environment almost exclusively by Nitrospira spp.
Denitrification requires anoxic conditions to encourage the appropriate biological communities to form. It is facilitated by a wide diversity of bacteria. Sand filters, lagooning and reed beds can all be used to reduce nitrogen, but the activated sludge process (if designed well) can do the job the most easily. Since denitrification is the reduction of nitrate to dinitrogen gas, an electron donor is needed. This can be, depending on the wastewater, organic matter (from faeces), sulfide, or an added donor like methanol.
Sometimes the conversion of toxic ammonia to nitrate alone is referred to as tertiary treatment.
Many sewage treatment plants use axial flow pumps to transfer the nitrified mixed liquor from the aeration zone to the anoxic zone for denitrification. These pumps are often referred to as Internal Mixed Liquor Recycle (IMLR) pumps.
Phosphorus removal
Phosphorus removal is important as it is a limiting nutrient for algae growth in many fresh water systems. It is also particularly important for water reuse systems where high phosphorus concentrations may lead to fouling of downstream equipment such as reverse osmosis.
Phosphorus can be removed biologically in a process called enhanced biological phosphorus removal. In this process, specific bacteria, called polyphosphate accumulating organisms (PAOs), are selectively enriched and accumulate large quantities of phosphorus within their cells (up to 20 percent of their mass). When the biomass enriched in these bacteria is separated from the treated water, these biosolids have a high fertilizer value.
Phosphorus removal can also be achieved by chemical precipitation, usually with salts of iron (e.g. ferric chloride), aluminum (e.g. alum), or lime. This may lead to excessive sludge production as hydroxides precipitates and the added chemicals can be expensive. Chemical phosphorus removal requires significantly smaller equipment footprint than biological removal, is easier to operate and is often more reliable than biological phosphorus removal. Another method for phosphorus removal is to use granular laterite.
Once removed, phosphorus, in the form of a phosphate-rich sludge, may be stored in a land fill or resold for use in fertilizer.
Disinfection
The purpose of disinfection in the treatment of wastewater is to substantially reduce the number of microorganisms in the water to be discharged back into the environment. The effectiveness of disinfection depends on the quality of the water being treated (e.g., cloudiness, pH, etc.), the type of disinfection being used, the disinfectant dosage (concentration and time), and other environmental variables. Cloudy water will be treated less successfully, since solid matter can shield organisms, especially from ultraviolet light or if contact times are low. Generally, short contact times, low doses and high flows all militate against effective disinfection. Common methods of disinfection include ozone, chlorine, ultraviolet light, or sodium hypochlorite. Chloramine, which is used for drinking water, is not used in wastewater treatment because of its persistence.
Ultraviolet (UV) light can be used instead of chlorine, iodine, or other chemicals. Because no chemicals are used, the treated water has no adverse effect on organisms that later consume it, as may be the case with other methods. UV radiation causes damage to the genetic structure of bacteria, viruses, and other pathogens, making them incapable of reproduction. The key disadvantages of UV disinfection are the need for frequent lamp maintenance and replacement and the need for a highly treated effluent to ensure that the target microorganisms are not shielded from the UV radiation (i.e., any solids present in the treated effluent may protect microorganisms from the UV light).
Ozone (O3) is generated by passing oxygen (O2) through a high voltage potential resulting in a third oxygen atom becoming attached and forming O3. Ozone is very unstable and reactive and oxidizes most organic material it comes in contact with, thereby destroying many pathogenic microorganisms. Ozone is considered to be safer than chlorine because, unlike chlorine which has to be stored on site (highly poisonous in the event of an accidental release), ozone is generated onsite as needed. Ozonation also produces fewer disinfection by-products than chlorination. A disadvantage of ozone disinfection is the high cost of the ozone generation equipment and the requirements for special operators.
Odour Control
Odours emitted by sewage treatment are typically an indication of an anaerobic or "septic" condition. Early stages of processing will tend to produce smelly gases, with hydrogen sulfide being most common in generating complaints. Large process plants in urban areas will often treat the odours with carbon reactors, a contact media with bio-slimes, small doses of chlorine, or circulating fluids to biologically capture and metabolize the obnoxious gases. Other methods of odour control exist, including addition of iron salts, hydrogen peroxide, calcium nitrate, etc. to manage hydrogen sulfide levels.
Sludge treatment and disposal
The sludges accumulated in a wastewater treatment process must be treated and disposed of in a safe and effective manner. The purpose of digestion is to reduce the amount of organic matter and the number of disease-causing microorganisms present in the solids. The most common treatment options include anaerobic digestion, aerobic digestion, and composting. Incineration is also used albeit to a much lesser degree.
Sludge treatment depends on the amount of solids generated and other site-specific conditions. Composting is most often applied to small-scale plants with aerobic digestion for mid sized operations, and anaerobic digestion for the larger-scale operations.
Anaerobic digestion
Anaerobic digestion is a bacterial process that is carried out in the absence of oxygen. The process can either be thermophilic digestion, in which sludge is fermented in tanks at a temperature of 55°C, or mesophilic, at a temperature of around 36°C. Though allowing shorter retention time (and thus smaller tanks), thermophilic digestion is more expensive in terms of energy consumption for heating the sludge.
Anaerobic digestion is the most common (mesophilic) treatment of domestic sewage in septic tanks, which normally retain the sewage from one day to two days, reducing the BOD by about 35 to 40 percent. This reduction can be increased with a combination of anaerobic and aerobic treatment by installing Aerobic Treatment Units (ATUs) in the septic tank.
One major feature of anaerobic digestion is the production of biogas (with the most useful component being methane), which can be used in generators for electricity production and/or in boilers for heating purposes.
Aerobic digestion
Aerobic digestion is a bacterial process occurring in the presence of oxygen. Under aerobic conditions, bacteria rapidly consume organic matter and convert it into carbon dioxide. The operating costs used to be characteristically much greater for aerobic digestion because of the energy used by the blowers, pumps and motors needed to add oxygen to the process.
Aerobic digestion can also be achieved by using diffuser systems or jet aerators to oxidize the sludge.
Composting
Composting is also an aerobic process that involves mixing the sludge with sources of carbon such as sawdust, straw or wood chips. In the presence of oxygen, bacteria digest both the wastewater solids and the added carbon source and, in doing so, produce a large amount of heat.
Incineration
Incineration of sludge is less common because of air emissions concerns and the supplemental fuel (typically natural gases or fuel oil) required to burn the low calorific value sludge and vaporize residual water. Stepped multiple hearth incinerators with high residence time and fluidized bed incinerators are the most common systems used to combust wastewater sludge. Co-firing in municipal waste-to-energy plants is occasionally done, this option being less expensive assuming the facilities already exist for solid waste and there is no need for auxiliary fuel.
Sludge disposal
When a liquid sludge is produced, further treatment may be required to make it suitable for final disposal. Typically, sludges are thickened (dewatered) to reduce the volumes transported off-site for disposal. There is no process which completely eliminates the need to dispose of  biosolids. There is, however, an additional step some cities are taking to superheat sludge and convert it into small pelletized granules that are high in nitrogen and other organic materials. The product which is left is called "cake" and that is picked up by companies which turn it into fertilizer pellets. This product is then sold to local farmers and turf farms as a soil amendment or fertilizer, reducing the amount of space required to dispose of sludge in landfills. Much sludge originating from commercial or industrial areas is contaminated with toxic materials that are released into the sewers from the industrial processes. Elevated concentrations of such materials may make the sludge unsuitable for agricultural use and it may then have to be incinerated or disposed of to landfill.
Treatment in the receiving environment
Many processes in a wastewater treatment plant are designed to mimic the natural treatment processes that occur in the environment, whether that environment is a natural water body or the ground. If not overloaded, bacteria in the environment will consume organic contaminants, although this will reduce the levels of oxygen in the water and may significantly change the overall ecology of the receiving water. Native bacterial populations feed on the organic contaminants, and the numbers of disease-causing microorganisms are reduced by natural environmental conditions such as predation or exposure to ultraviolet radiation. Consequently, in cases where the receiving environment provides a high level of dilution, a high degree of wastewater treatment may not be required. However, recent evidence has demonstrated that very low levels of specific contaminants in wastewater, including hormones (from animal husbandry and residue from human hormonal contraception methods) and synthetic materials such as phthalates that mimic hormones in their action, can have an unpredictable adverse impact on the natural biota and potentially on humans if the water is re-used for drinking water.

No comments:

Post a Comment